
DRAFT

A comparative analysis of graphics APIs and
shader languages used in modern game
engines and their impact on the game
development process

Emil Stephansen

Abstract This paper presents a comparative analysis of graphics Application Pro-
gramming Interface (API)s, shader languages, and shader development workflows in
modern game engines, with a specific focus on Unity, Unreal Engine, and Godot. Using
data extracted from the International Game Database (IGDB), the study investigates
trends in engine adoption, Graphics Processing Unit (GPU) API usage, and shader tools
employed across multiple platforms.

The analysis highlights that Unity and Unreal Engine dominate the market, with
High-Level Shader Language (HLSL) emerging as the most widely used shader language
due to its strong integration with DirectX and Vulkan. Metal Shading Language (Metal
Shading Language (MSL)) and PlayStation Shader Language (PSSL) remain relevant
in platform-specific ecosystems like Apple and PlayStation. Furthermore, the study
reveals significant differences in shader workflows:
• Unreal Engine excels in high-fidelity rendering with its robust Material Editor but

poses challenges for custom HLSL shaders.
• Unity’s Shader Graph provides accessibility and flexibility, catering to both Universal

Render Pipeline (URP) and High Definition Render Pipeline (HDRP).
• Godot offers a streamlined custom shader language and visual tools optimized for

lightweight workflows.
The study also discusses the ongoing deprecation of OpenGL in favor of modern

APIs like Vulkan and Metal, driven by the need for improved performance and visual
fidelity. By analyzing engine-specific rendering systems, we provide insights into the
trade-offs between flexibility, accessibility, and platform optimization.

This work aims to guide game developers in selecting appropriate tools and work-
flows for shader programming, balancing visual quality, performance, and development
efficiency.

EaDania, 2025, page 1 of 39
© Draft version – November 2025 doi:N/A



DRAFT

2 EaDania

Introduction
The rapid advancement of computer graphics has significantly influenced the game
development process, enabling developers to produce visually stunning and complex
interactive experiences. Central to this progress are the underlying graphics APIs and
shader languages that dictate how visual data is processed and rendered on modern
hardware. Choosing the appropriate tools, such as game engines, rendering pipelines,
and shader workflows, is essential for balancing visual fidelity, performance, and
development efficiency.

Two engines, Unity and Unreal Engine, have emerged as dominant platforms
in the game development industry. Unity’s accessibility, cross-platform versatility,
and customization options make it particularly attractive for small teams and mobile
development. Meanwhile, Unreal Engine prioritizes photorealism and advanced
rendering capabilities, positioning it as the preferred choice for high-end projects.
The rise of open-source alternatives like Godot further expands developers’ options,
particularly for lightweight and flexible workflows.

Shader programming plays a crucial role in modern rendering pipelines, driving
visual effects such as lighting, shadows, reflections, and post-processing. The choice of
shader language—whether HLSL, OpenGL Shading Language (GLSL), or platform-
specific options like MSL—directly influences the complexity of development and the
achievable graphical quality. Simultaneously, the industry-wide shift from legacy APIs
like OpenGL to modern alternatives like Vulkan, DirectX 12, and Metal underscores
the demand for optimized performance on diverse hardware platforms.

Despite the wealth of tools available, there remains a lack of detailed analyses
comparing shader development workflows across engines. While existing research
explores engine performance and high-level features, few studies dive into the practical
implications of shader programming tools, API selection, and their impact on
development workflows.

Purpose and Contribution

This paper addresses this gap by conducting a comparative analysis of:
1. Graphics APIs used across platforms (DirectX, Vulkan, Metal).
2. Shader languages and their adoption in Unity, Unreal Engine, and Godot.
3. Shader workflows—visual tools (e.g., Shader Graph, Material Editor) versus

code-based programming.
The study leverages data from the IGDB to identify trends in engine usage and
API adoption. By analyzing the trade-offs between flexibility, performance, and
accessibility, this work aims to guide developers in selecting tools and workflows suited
to their project goals, whether targeting high-fidelity visuals, lightweight solutions, or
rapid prototyping.



DRAFT

Graphics APIs and Shaders in Game Development 3

Related Work
Recent research on game engines and their underlying technologies has focused on
several key aspects that are crucial for understanding how these systems impact game
development: graphics APIs, shader languages, performance, workflow efficiency,
and the balance between visual quality and resource usage. In this section, we provide
an overview of the most significant findings in these areas, which helps to illustrate
the trade-offs and strengths of different engines, particularly Unity and Unreal Engine,
as well as emerging alternatives like Flax.

One major focus in recent years has been on the move towards physically-based
shading models. Karis1 explored the implementation of such a model in Unreal
Engine 4, aiming to enhance visual realism while simplifying parameter complexity.
This work laid the foundation for a modern shading workflow that balances visual
quality with computational efficiency. This trend towards physically-based shading is
evident across many engines, as developers strive for photorealism without sacrificing
usability.

Another important dimension of comparison involves the practical use cases of
different engines. Sabir et al.2 investigated the use of Unity and Unreal Engine for
synthetic data generation in construction hazard scenarios. Their findings showed that
while Unreal Engine’s advanced graphical capabilities made it ideal for simulating
visually complex environments, Unity’s accessibility and ease of use positioned it
as a more suitable choice for rapid prototyping. This highlights a recurring theme
in engine selection: the trade-off between high-end visual fidelity and development
speed.

The versatility of Unity has also been highlighted in broader contexts. Hussain et
al.3 conducted a technical survey of Unity, emphasizing its cross-platform capabilities
and growing use beyond traditional gaming, including in VR/AR and other industries.
Unity’s simplicity and versatility make it attractive to both beginners and professionals,
particularly those looking to develop across a range of platforms without needing
specialized expertise.

In terms of engine architecture, Lee et al.4 compared Unity and Unreal Engine
4 by implementing a first-person shooter in both. Their study found that Unity’s
component-based system offers greater flexibility for smaller teams, while Unreal’s
tools are better suited for achieving photorealistic visuals. This comparison points to a
fundamental difference in how these engines approach development: Unity prioritizes
modularity and ease of use, whereas Unreal Engine provides robust tools for detailed,
high-quality graphics.

1. Karis, Brian, Real Shading in Unreal Engine 4.
2. Sabir, Aqsa, et al., Synthetic Data Generation with Unity 3D and Unreal Engine for Construction

Hazard Scenarios: A Comparative Analysis.
3. Hussain, Faizan, et al., Unity Game Development Engine: A Technical Survey.
4. Lee, HanSeong, SeungTaek Ryoo, and SangHyun Seo, A Comparative Study on the Structure and

Implementation of Unity and Unreal Engine 4.



DRAFT

4 EaDania

Performance analysis has also been a major focus of comparative studies. Szelug5

compared Unity with the newer Flax Engine, examining their physics simulations and
general performance. Unity consistently outperformed Flax in terms of frame rate and
resource efficiency, which is perhaps expected given Flax’s relatively recent entry into
the market and ongoing development. Nevertheless, this comparison helps highlight
the challenges and opportunities for emerging engines attempting to compete with
established industry leaders.

A deeper look at performance in 3D games was provided by Abramowicz and
Borczuk6, who found that Unity tends to achieve a better average frame rate while
using fewer resources compared to Unreal Engine. However, Unreal Engine was noted
for providing superior visual quality at the cost of higher RAM and GPU usage. This
trade-off between performance and graphical fidelity is a recurring theme in engine
selection, depending on project goals and available hardware.

Szabat and Plechawska-Wójcik7 added another layer to this discussion by compar-
ing user experiences with Unity and Unreal. They found that while Unity generally
provides better runtime performance, Unreal’s visual quality tends to receive higher
user satisfaction ratings. This suggests that the choice of engine may depend not only
on technical performance metrics but also on the desired end-user experience.

Šmíd8 approached the comparison through a practical benchmark involving a
reimplementation of the classic Pac-Man game. His work emphasized Unity’s
suitability for prototyping due to its simplicity, while Unreal’s sophisticated features
allowed for deeper customization at the cost of a steeper learning curve. This
illustrates how different engines cater to varying levels of developer expertise and
project complexity.

Finally, Szafran and Plechawska-Wójcik9 examined the impact of graphics settings
on performance, specifically in Unreal Engine. Their results confirmed that changes
in shadow quality had the most significant effect on frame rates, emphasizing the
importance of careful graphics tuning to balance visual quality and performance.

Together, these studies provide a comprehensive overview of the strengths and
weaknesses of modern game engines. Understanding these trade-offs allows developers
to make informed choices about which graphics APIs and shader languages are most
suitable for their projects, whether they aim for cross-platform versatility, high-end
visual fidelity, or rapid prototyping capabilities.

5. Szelug, Wojciech, Comparative Analysis of the Performance of the Flax Engine and Unity.
6. Abramowicz, Kamil, and Przemysław Borczuk, Comparative Analysis of the Performance of Unity

and Unreal Engine in 3D Games.
7. Szabat, Bartłomiej, and Małgorzata Plechawska-Wójcik, Comparative Analysis of Selected Game

Engines.
8. Šmíd, Antonín, Comparison of Unity and Unreal Engine.
9. Szafran, Kamil, and Małgorzata Plechawska-Wójcik, Impact of Changes in Graphics Setting on

Performance in Selected Video Games.



DRAFT

Graphics APIs and Shaders in Game Development 5

Gaps in Existing Research

While the existing body of research provides valuable insights into the performance
and usability of different game engines, there are several notable gaps. Most studies
focus on the general development workflows and performance of Unity and Unreal
Engine, without diving deeply into the specific nuances of shader development itself.
The emphasis tends to be on the ease of use and high-level graphical features rather
than the intricacies of shader programming and customization.

Furthermore, almost all comparative analyses are limited to the two major engines,
Unity and Unreal, with very little attention given to other options like Godot or
proprietary engines, which also have unique strengths and use cases. Additionally,
there is a lack of comprehensive comparisons regarding the choice of GPU APIs
(such as Vulkan, DirectX, or OpenGL) and how these impact engine performance and
developer workflow. Only a few studies, like that by Szafran and Plechawska-Wójcik10,
briefly touch on the impact of graphics settings, but a detailed exploration of how
different rendering pipelines and GPU APIs influence game development remains
largely unexamined.

These gaps highlight opportunities for future research to provide a more in-depth
understanding of shader-specific development practices, the broader ecosystem of
game engines, and the impact of various GPU APIs and rendering pipelines on the
overall development process.

Methodology and Data Preparation
To provide a comprehensive understanding of the current landscape of game engines
and their role in modern game development, an extensive analysis was conducted using
data from the IGDB. The IGDB, was chosen for its extensive API, which provides
access to a large volume of information about released games. IGDB operates on a
user-driven model, allowing users to contribute entries that are subsequently validated
by either staff members or the wider user community. This ensures a high level of
data accuracy and reliability while maintaining an expansive catalog of games across
various platforms. This dataset encompasses all games registered as released on
IGDB between October 18, 2019, and October 17, 2024. The chosen time frame
captures recent trends while ensuring sufficient data volume for meaningful insights.

Data extraction was performed using a publicly available C# program (see Section
Supplementary Material), ensuring transparency and reproducibility. The extracted
dataset consists of the following fields:
• first_release_date: The game’s initial release date in epoch

10. Szafran, Kamil, and Małgorzata Plechawska-Wójcik, Impact of Changes in Graphics Setting on
Performance in Selected Video Games.



DRAFT

6 EaDania

• game_engines: The game engine(s) used.
• name: The game’s title.
• platforms: The platforms on which the game was released.
To illustrate the data structure, an example JSON object representing a game entry
is provided in Listing 1. This structured approach allows for detailed exploration
of trends across game engines and platforms. The full dataset is accessible at the
provided supplementary material link.

{
"id": 217028,
"first_release_date": 1666569600,
"game_engines": [
{
"id": 13,
"name": "Unity"

}
],
"name": "Beat Blitz",
"platforms": [
{
"id": 6,
"name": "PC (Microsoft Windows)"

},
{
"id": 14,
"name": "Mac"

},
{
"id": 34,
"name": "Android"

},
{
"id": 39,
"name": "iOS"

}
]

}

Listing 1. example of JSON object pulled from IGDB

Initially, discrepancies in engine naming conventions were observed, with entries
including variations such as "Unity 2021" and "Unity3D." These inconsistencies
complicated direct comparisons, necessitating a standardization process. Using a



DRAFT

Graphics APIs and Shaders in Game Development 7

Python script (See Section Supplementary Material), engine names were mapped
to standardized labels, as shown in Table 1. This standardization enabled a unified
analysis of engine popularity across platforms and provided a clearer picture of the
distribution of game engines.

TABLE 1. Standardized Game Engine Names

Unstandardized Engine Labels Standardized Game Engine Labels

unity, unity3d Unity
unreal, ue Unreal Engine
renpy, ren’py Ren’Py
gamemaker, game maker GameMaker Studio
godot Godot
rpg maker RPG Maker

Figures 1 and 2 illustrate the impact of this standardization. Figure 1 shows the
fragmentation caused by unstandardized engine labels, with multiple variations of
Unity and Unreal dominating the top ranks. This lack of consistency made it difficult
to identify trends among less frequently used engines. After standardization (Figure
2), it becomes evident that while Unity and Unreal remain the most popular, many
other engines also play significant roles in game development.

Engine Adoption and Graphics API Trends
The standardized dataset reveals six major engines as dominant: Unity, Unreal, RPG
Maker, GameMaker, Ren’Py, and Godot. Together, these engines account for 10,551
of the 13,685 games in the dataset (77.1%), underscoring their central role in modern
game development. This clarity, achieved through standardization, highlights the
importance of properly structuring data for meaningful analysis.

Although GameMaker scores highly in terms of usage, it was excluded from
further analysis due to significant differences between its versions, which complicate
direct comparisons. Similarly, RPG Maker was excluded due to its reliance on HTML5
and OpenGL ES in newer versions, which differ substantially from the modern APIs
used by engines like Unity and Unreal.

Following this, an analysis of the graphics APIs utilized by these engines was
conducted, focusing on the platforms where the games were released and the corre-
sponding graphics APIs available. This analysis provides insight into how graphics
APIs, such as DirectX, Vulkan, Metal, and OpenGL, are leveraged across different
environments.

The analysis excludes proprietary platforms such as PlayStation, Xbox, and
Nintendo Switch in this specific section, as these use fixed APIs—Graphics Core
Next Metal (GNM) (PlayStation), DirectX (Xbox), and NVN (Nintendo Switch)—that



DRAFT

8 EaDania

Notes:

FIGURE 1. Unstandardized Engine Labels releases since Oct 2018

FIGURE 2. Standardized Engine Labels releases since Oct 2018



DRAFT

Graphics APIs and Shaders in Game Development 9

do not vary between engines. However, these platforms are revisited in later sections
where the choice of shader languages (e.g., HLSL for DirectX or PSSL for GNM)
becomes relevant to the discussion.

For clarity and to avoid unnecessary repetition, the full table of all platforms and
APIs is provided in Appendix A1. This ensures that readers interested in the broader
context can reference the complete dataset.

Data collection was based on various sources, including official documentation,
developer blogs, and third-party resources. For transparency, the specific sources
for each platform and engine are cited directly below Table 2, ensuring that any
assumptions or inferences can be verified through the original documentation.

TABLE 2. GPU API used on different platforms

Engine Platform API Notes

Unity PC (Microsoft Windows) DirectX12, DirectX11,
Vulkan, OpenGL, Open-
GLES3

OpenGL is deprecated
see11

Unity Mac Metal
Unity Linux OpenGL, Vulkan12

Unity Android Vulkan, OpenGLES13

Unity iOS Metal14

Unreal PC (Microsoft Windows) DirectX12, DirectX11,
Vulkan, OpenGL

OpenGL is deprecated
see15

Unreal Mac Metal
Unreal Linux Vulkan, OpenGL OpenGL is deprecated

see16

Unreal Android Vulkan, OpenGLES
Unreal iOS Metal
Godot17 PC (Microsoft Windows) DirectX12, Vulkan, Open-

GLES
Godot Mac Metal, OpenGLES Uses Vulkan transpiled to

Metal via MoltenVK.
Godot Linux Vulkan, OpenGLES
Godot Android Vulkan, OpenGLES

11. Unity Technologies, Unity OpenGL Deprecation and Removal for macOS and Windows.
12. Unity Technologies, Graphics APIs on Windows.
13. Unity Technologies, Graphics APIs on ios.
14. Unity Technologies, Graphics APIs on ios.
15. Epic Games, Warning: OpenGL is No Longer Supported for Desktop Platforms.
16. Epic Games, Warning: OpenGL is No Longer Supported for Desktop Platforms.
17. Godot Engine Developers, Rendering Drivers in Godot 4.



DRAFT

10 EaDania

Engine Platform API Notes

Godot iOS Metal, OpenGLES Uses Vulkan transpiled
to Metal via MoltenVK;
OpenGL ES is available
as a fallback for legacy
devices.

GameMaker18 PC (Microsoft Windows) DirectX11
GameMaker Mac OpenGL
GameMaker Linux OpenGL
GameMaker Android OpenGLES
GameMaker iOS OpenGLES
RenPy19 PC (Microsoft Windows) OpenGL
RenPy Mac OpenGL
RenPy Linux OpenGL
RenPy Android OpenGLES
RenPy iOS OpenGLES

Graphics API Analysis and Observations
Unreal Engine employs a Rendering Hardware Interface (RHI), which acts as an abstraction layer
to facilitate support for multiple graphics APIs, including DirectX, Vulkan, and Metal, across various
platforms. This architecture provides developers with the flexibility to optimize rendering for specific
hardware while maintaining a unified rendering pipeline.20

It is important to clarify that, Godot is described as using Metal on iOS and macOS, it actually relies
on MoltenVK, a translation layer that converts Vulkan commands into Metal. This enables Godot to benefit
from Vulkan’s modern capabilities while maintaining compatibility with Apple’s proprietary API.
The analysis of the graphics APIs used across different platforms reveals several key trends:

The data for these observations are visualized in Figure 3. Each platform is represented with individual
breakdowns, such as Figure 3a for Android, Figure 3b for iOS, and so on for each of the analyzed platforms.
A legend is available in Figure 3f.

Android
As shown in Figure 3a, the usage of graphics APIs is almost evenly split between Vulkan and OpenGLES,
which makes sense given that Android platforms are generally Vulkan compatible, and Vulkan is the newer
successor to OpenGL developed by the Khronos Group.

iOS
As depicted in Figure 3b, the graphics APIusage is dominated by Metal, Apple’s proprietary GPU API. This
is expected, as both Unity and Unreal Engine, which are powerful and popular engines, leverage Metal to

18. Wikipedia Contributors, GameMaker Studio Graphics APIs.
19. The use of OpenGL and OpenGL ES in Ren’Py is not directly documented but is observable in the

engine’s open-source code on GitHub: Ren’Py Developers, n.d.
20. Epic Games, Render Hardware Interface (RHI) in Unreal Engine.



DRAFT

Graphics APIs and Shaders in Game Development 11

optimize performance on iOS devices. A small percentage is still openGLES, as this is techinically possible
on some iOS devices though Godot, and the the fact that ren’py and GameMaker still uses OpenGLES.

Linux

Referencing Figure 3c, the API usage on Linux is exclusively composed of Khronos Group technologies,
specifically Vulkan and OpenGL. These APIs are well known for their compatibility and native support on
Linux platforms.

MacOS

As illustrated in Figure 3e, unlike iOS, macOS shows more diversity in API usage, with Vulkan and
OpenGL being present alongside Metal. This could be attributed to the fact that more games are released
on macOS through frameworks like Ren’Py and GameMaker, which traditionally rely on OpenGL.

Summary of API Observations

These observations provide valuable insight into the compatibility and adoption trends of graphics APIs
across different platforms. The distribution of APIs reflects both the technical constraints of each platform
and the strategic choices made by developers and game engines to ensure optimal performance and
portability.

(a) Android (b) iOS (c) Linux

(d) Windows (e) MacOS (f) Legend.

FIGURE 3. Distribution of Available GPU APIs depending on platform



DRAFT

12 EaDania

Impact of OpenGL Deprecation
To further understand the current trends regarding graphics API usage and the impact of deprecation
decisions, the next step involved analyzing the effect of OpenGL’s deprecation by both Unity and Unreal
Engine on Windows and macOS platforms21,22. This analysis specifically focuses on these platforms, as
OpenGL remains in use on other engines and platforms where newer APIs such as Vulkan, Metal, or
DirectX are unsupported or impractical.

The exclusion of OpenGL aims to reveal how the distribution of graphics APIs changes when this older
API is no longer supported by these major engines. By comparing the original dataset, which included
OpenGL as a supported API, with the revised data set that excludes OpenGL for Windows and macOS, this
highlights notable changes in API preferences. This approach provides insights into the ongoing transition
towards more modern graphics APIs, such as Vulkan, Metal, and DirectX 12, and helps determine how
these changes impact the distribution and adoption rates of different APIs across platforms.

The revised results are illustrated in Figure 4 , which shows the adjusted distribution of graphics
APIs on the Windows platform without OpenGL for Unity and Unreal. Comparison of Figures 4a and 4b
provides a clear visual representation of how OpenGL deprecation has changed the adoption of other APIs,
with a focus on understanding whether Vulkan or Metal has taken over the market share previously held by
OpenGL. It also highlights the dominance of Unreal Engine and Unity, as this change heavily affected the
distribution.

Focus on High-Fidelity Graphics Analysis
In this part of the analysis, the focus is specifically on engines that are capable of delivering high-fidelity,
realistic 3D graphics. Consequently, engines such as Unreal, Unity, and Godot are considered for the
subsequent detailed analysis. These engines are known for their robust capabilities in rendering complex
3D scenes and have widespread use in the game industry for producing visually striking content.

21. Unity Technologies, Unity OpenGL Deprecation and Removal for macOS and Windows.
22. Epic Games, Warning: OpenGL is No Longer Supported for Desktop Platforms.

(a) Windows With OpenGL (b) Windows without OpenGL

FIGURE 4. Distribution API on Windows With And Without OpenGL



DRAFT

Graphics APIs and Shaders in Game Development 13

On the other hand, engines primarily used for 2D graphics or with limited support for realistic 3D
rendering, such as RPG Maker, Ren’Py, and GameMaker Studio, are excluded from this analysis. These
engines, while valuable for specific types of games, do not offer the same level of graphical fidelity needed
for the kind of high-end visual experiences targeted in this study. The focus here is to assess the engines
that are most relevant for developers aiming to produce immersive and state-of-the-art visual content in 3D.

To further understand the implications for graphics API usage, a similar comparative analysis was
conducted, this time focusing solely on Unreal, Unity, and Godot. This revised analysis provides insights
into the distribution of graphics APIs across different platforms, specifically for engines that prioritize
high-fidelity 3D graphics. The visualized data can be seen in Figure 5.

The revised analysis reveals some significant trends. On both Windows (Figur 5d) and macOS (Figure
5e) platforms, OpenGL has effectively been phased out and is no longer in use, indicating that OpenGL may
not be suitable for high-fidelity graphics on these platforms. Instead, more specialized APIs have taken its
place—Metal is predominantly used for macOS, while DirectX versions and Vulkan dominate on Windows.
This transition highlights the shift towards platform-optimized APIs that provide better performance for
complex 3D rendering tasks.

On Linux Figure (5c), however, OpenGL still plays a role, though Vulkan is increasingly being adopted,
suggesting a gradual shift towards newer and more capable graphics APIs. On Android it is a 50 percent
split between opengles and vulkan indicating that even on this platform high fidelity graphics uses vulkan
more.

The observations from this revised analysis underscore the ongoing evolution of graphics API adoption,
driven by the need for higher performance and better platform optimization, particularly in engines used
for high-end 3D graphics. This focus ensures that the findings are directly applicable to scenarios where
achieving high visual fidelity is a core requirement.

(a) Android (b) iOS (c) Linux

(d) Windows (e) MacOS (f) Legend.

FIGURE 5. Distribution of Available GPU APIs on high fidelity engines depending on
platform



DRAFT

14 EaDania

Shader Language Analysis
The next part of the analysis focuses on the shader languages utilized by different GPU APIs across
platforms. This analysis includes all the different APIs even the propiertary ones, as most of these use
existing and popular shading languages and not propiertary ones. To determine which shader languages
are used for each API, a reference table 3 was created to map GPU APIs to their corresponding shader
languages. It is worth noting that while Vulkan uses a binary format known as Standard Portable
Intermediate Representation for Vulkan (SPIR-V), shaders are typically authored in GLSL or HLSL
and then compiled to SPIR-V. As such, Vulkan was counted for both GLSL and HLSL in this analysis.23

This is true for NVM aswell.

TABLE 3. Graphics APIs and Corresponding Shader Languages

API Shader Language

OpenGL GLSL
OpenGLES GLSL
Metal Metal Shading Language (MSL)
DirectX 11 HLSL
DirectX 12 HLSL
Vulkan HLSL /GLSL* (SPIR-V)
GNM PSSL
NVN HLSL /GLSL* (SPIR-V)

Visualizations of the different distributions of shader languages, depending on the platform, provide
further insights. The data, as illustrated in Figure 6, shows some interesting trends:

Windows and Xbox
as seen in figures 6j,6k and 6f HLSL clearly dominates on Microsoft-based platforms, which include
Windows and Xbox. This is expected, given Microsoft’s promotion of HLSL as the primary shading
language for DirectX. The Windows platform still has a larger percentage of GLSL, this probably is due to
the support of openGLES from Unity which uses GLSL and vulkans ability to use either GLSL or HLSL .

PlayStation Platforms
It is evident in figures 6g and 6h that PlayStation platforms primarily use PLSL, Sony’s proprietary shader
language, with a small portion marked as unknown. This is likely due to games released using the Godot
engine, where the specific shader language can vary depending on how the game was ported24. It is still
probable that PLSL is used in these cases.

Apple Platforms (macOS and iOS)
On Apple platforms (figures 6d and 6b, the Metal Shading Language (MSL) is dominant, with a small
proportion of GLSL and HLSL , which can be attributed to Godot being able to use OpenGLES on both

23. Khronos Group, High-Level Shader Language Comparison.
24. Godot Engine Developers, Consoles — Godot Engine (stable) documentation in English.



DRAFT

Graphics APIs and Shaders in Game Development 15

platforms.

Nintendo Switch
The distribution is evenly split between GLSL and HLSL as seen in figure 6e. THis is due to fact that all
the engines compiles to NVM which can use either GLSL or HLSL.

Linux and Android
Linux and Android show a similar distribution, as Vulkan or OpenGL can be used in all engines. This in
seen in figures 6a and 6c.

Web Browser
The web browser shading languages as seen in fingure 6i shows a 100% bias towards GLSL, as Webgl is
the only supported web platform for the given engines at the time of writing.

Summary of Shading languages
The summary of these observations is that HLSL is clearly the most dominant shader language, this can be
seen in 7. This is esspecially true factoring in that Vulkan and NVN can use both GLSL and HLSL. PSSL
and MSL are also prevalent but are limited to their respective proprietary ecosystems (PlayStation and
Apple). GLSL still remains relevant, and it is important to note that both GLSL and HLSL according to
Anteru25 are closely related C-style shader languages—knowledge of one can easily be transferred to the
other. Similarly, Metal Shading Language (MSL), according to Galvan26, is heavily influenced by other
shader languages, such as HLSL and GLSL, and borrows concepts from both, making it accessible for
developers familiar with these languages. PlayStation Shader Language (PSSL), on the other hand, while
being similar to HLSL, has a closer alignment with PlayStation hardware features. According to Stenson27,
porting shaders from HLSL to PSSL is considered "fairly trivial," reflecting the syntactical and structural
similarities between the two languages, albeit with extensions for PlayStation’s unique capabilities.

25. Ludwig, Heiko, Mapping between HLSL and GLSL.
26. Galvan, Alain, A Review of Shader Languages.
27. Stenson, Richard, and Chris Ho, PlayStation Shader Language for PlayStation 4.



DRAFT

16 EaDania

(a) Android (b) iOS (c) Linux (d) MacOS

(e) Nintendo Switch (f) Windows (g) Playsation 4 (h) Playstation 5

(i) Web Browser (j) Xbox One (k) Xbox XS (l) Legnd

FIGURE 6. Distribution of available shading languages based on platform built from
high fidelity engines.



DRAFT

Graphics APIs and Shaders in Game Development 17

FIGURE 7. Shader languages used on game releases since 18 Oct 2018



DRAFT

18 EaDania

Shader Development Tools and Workflows
The process of creating shaders differs significantly across various game engines, not only in terms of the
language used but also in terms of the tools available for shader authoring. In Unity, developers can either
use Shader Graph, a visual node-based editor, or write shaders in a variaty of languages directly. Shader
Graph abstracts much of the complexity involved in shader authoring, making it accessible even to those
with limited coding experience. In Unreal Engine, the Material Editor serves a similar purpose but with
a different set of paradigms and optimizations for high-end visual fidelity. Godot offers a Shader Editor,
which is somewhat of a hybrid between the two. In this section, each of these tools will be examined on
how they influences the workflow, efficiency, and learning curve for developers.

Unity: Render Pipelines and Their Impact on Game Development
In the context of modern game development, Unity’s render pipelines and the ability to customize shaders
play a critical role in achieving the visual fidelity and flexibility required by high-end game engines. Unity
provides several render pipelines—namely the Built-in Render Pipeline, URP, and HDRP—each tailored
to specific graphical and hardware requirements. Additionally, Unity’s Scriptable Render Pipeline (SRP)
framework empowers developers to create and customize shaders, enabling further optimization of both
graphics quality and performance.

Unity’s implementation of render pipelines is designed to adapt rendering processes to various
platforms and degrees of realism. The choice of render pipeline significantly impacts both the development
process and the final visual output. This flexibility allows Unity to target complex 3D games as well as
optimized projects for mobile and web platforms.

The following sections outline Unity’s render pipelines, their influence on the development workflow,
and the interaction between pipeline selection, graphics APIs, and shader languages.

SRP
Unity introduced the SRP as a framework for developers to design customized rendering pipelines tailored
to specific project needs. SRP provides developers with control over how graphical data is processed during
the rendering stages, enabling bespoke solutions optimized for performance and visual fidelity. Both URP
and HDRP are built on SRP, serving as standardized implementations that demonstrate the flexibility SRP
provides.

Unity’s Render Pipelines
Unity provides developers with three main render pipelines, each offering distinct advantages based on
project requirements:
• Built-in Render Pipeline:

Unity’s legacy pipeline supports a broad range of platforms and offers flexibility for shader customization.
While it lacks the modern features available in newer pipelines, it remains suitable for projects targeting
PCs, consoles, mobile devices, and web platforms.

• URP:
Designed to balance performance and visual fidelity, URP is optimized for scalability across mobile
devices, PCs, and consoles. Although it supports advanced graphical features, it lacks some of the
photorealistic capabilities found in HDRP.

• HDRP:
HDRP caters to high-fidelity projects requiring advanced graphical features such as ray tracing and
volumetric lighting. This pipeline is limited to powerful hardware platforms and does not support
mobile devices or less capable consoles like the Nintendo Switch.
HDRP depends on modern APIs to deliver its advanced rendering capabilities. For instance, it

supports DirectX 12 on Windows, Vulkan on Linux, and Metal on macOS. While HDRP can run on
DirectX 11, Unity strongly recommends DirectX 12 for optimal results, as HDRP is heavily optimized for
the features offered by newer APIs.



DRAFT

Graphics APIs and Shaders in Game Development 19

This pipeline setup allows developers to choose based on the desired balance between performance
and visual fidelity, while the ability to customize shaders and materials remains consistent across Unity’s
render pipelines.

Graphics APIs and Render Pipelines
Unity’s SRP and render pipelines are built with varying requirements for graphics APIs, depending on
platform capabilities. While OpenGL remains a supported API, primarily for older platforms and less
demanding projects, Unity is shifting focus toward modern APIs that enable advanced graphical effects and
optimized performance.
• URP and the Built-in Pipeline continue to support OpenGL for mobile devices and web platforms.

However, high-fidelity effects in advanced projects benefit from modern APIs such as DirectX 12
(Windows), Vulkan (Linux), and Metal (macOS).

• HDRP requires modern APIs capable of supporting advanced features like ray tracing and volumetric
lighting. As a result, OpenGL is not supported for HDRP projects.
Unity’s gradual move away from OpenGL reflects the industry’s broader focus on photorealistic

graphics and performance optimization for modern hardware28.

Rendering Modes in Unity’s Render Pipelines
Unity’s render pipelines support various rendering modes, each tailored to specific requirements for lighting,
shadowing, and performance:
• Forward Rendering:

Efficient for scenes with a small number of light sources, Forward Rendering calculates lighting on a
per-object basis, making it suitable for less complex lighting setups.

• Deffered Rendering
Designed for scenes with multiple light sources, Deferred Rendering processes lighting in a separate
pass, allowing efficient handling of complex lighting setups. This mode is particularly relevant for
HDRP projects.

• Forward+ Rendering
Primarily available in HDRP, Forward+ Rendering extends the capabilities of Forward Rendering,
supporting a larger number of dynamic light sources with minimal performance impact.
These rendering modes influence how light and shadows are calculated and play a key role in creating

custom shaders.

Future Developments in Unity’s Render Pipelines
Unity has indicated that future development efforts will prioritize URP and HDRP. In Unity 6, approximately
90% of new PC and console projects are expected to utilize either URP or HDRP, with the Built-in Pipeline
receiving support for at least two years post-launch. This shift highlights Unity’s focus on optimizing URP
and HDRP for modern platforms and phasing out legacy systems.29

Custom shaders in Unity
In Unity, materials act as a bridge between shaders and objects in a scene. A material defines the surface
appearance by linking a shader and adjusting its properties. Developers can customize materials with
specific parameters, such as colors, textures, and reflection properties, providing flexibility to create diverse
visual effects without modifying the shader code itself. Materials allow the reuse of a single shader across

28. Technologies, Unity, Unity’s Future with Render Pipelines.
29. Technologies, Unity, Unity’s Future with Render Pipelines.



DRAFT

20 EaDania

multiple objects with different appearances, simplifying the process of achieving visual variations in a
project.

Unity offers two primary approaches for working with shaders: Shader Graph and code-based shaders.
Shader Graph is a visual, node-based tool that simplifies the creation and editing of shaders, particularly
for the URP and the HDRP. Although originally designed for URP and HDRP, Shader Graph is also
compatible with the Built-in Render Pipeline. However, Shader Graph for the Built-in Pipeline only receives
bug fixes and no new features, as Unity’s focus has shifted to URP and HDRP30.

Code-Based Shaders
For code-based shaders, Unity supports several languages, including HLSL, C for Graphics (CG), and
GLSL, depending on the target platform and chosen graphics API. Unity recommends using HLSL for
URP and HDRP, as these pipelines are optimized for it31. CG, while supported, is mainly used for legacy
projects in the Built-in Pipeline and does not benefit from the advanced optimizations available in SRP
pipelines32. Additionally, Unity advises against using GLSL except for testing purposes due to its limited
integration with the engine’s rendering systems33.

Unity’s shader pipeline is orchestrated through ShaderLab, a domain-specific language unique to Unity.
ShaderLab acts as a wrapper and configuration system, providing metadata and directives that connect
Unity’s rendering engine to the underlying shader code. It is within ShaderLab files that developers define
SubShaders, which specify multiple fallback shaders, as well as Passes, which dictate the rendering pipeline
stages the shader should engage with. For example, a SubShader in ShaderLab might include a high-fidelity
pass for modern platforms and a simplified pass for legacy devices.

The key role of ShaderLab includes:
1. Render Queue Control: Developers can specify when objects are rendered relative to others, such as

opaque or transparent objects.
2. State Management: ShaderLab configures blending modes, depth testing, and stencil operations,

enabling precise control over the rendering pipeline without modifying shader code directly.
3. Multiple Passes: Developers can define multiple rendering passes within a single shader, allowing for

advanced effects like multi-layered rendering or shadow mapping.
An example ShaderLab can be seen in listing 2

Here, ShaderLab provides essential configuration (e.g., RenderType and Fallback) while the actual shader
code is implemented in HLSL, CG, or GLSL. When creating shaders in Unity, the build system
automatically compiles the shader code into the optimal format for the target API and platform. For
example, HLSL is compiled for DirectX 12 on Xbox and Windows, while GNM is used for PlayStation 5.
This ensures that shaders function seamlessly across platforms without requiring developers to manually
adapt them for each API34. Typically, shaders are compiled into machine code only when executed on the
target platform, providing flexibility since the GPU specifics are only identified during runtime35.

ShaderLab also manages these cross-platform complexities. By organizing SubShaders and Passes, it
allows Unity to automatically select the most appropriate rendering path for the current platform, ensuring
consistent performance and visuals.

Despite Unity’s flexibility in supporting multiple shader languages, HLSL has emerged as the preferred
choice for URP and HDRP due to its robust optimization capabilities and compatibility with modern
hardware36. GLSL, as outlined in Unity’s documentation, is generally not recommended for production

30. Unity Technologies, Choosing a Render Pipeline.
31. Unity Technologies, Choosing a Render Pipeline.
32. Unity Technologies, Writing Shaders for the Universal Render Pipeline.
33. Unity Technologies, GLSL Shader Programs.
34. Unity Technologies, Render Pipelines Feature Comparison.
35. Unity Technologies, Render Pipelines Feature Comparison.
36. Unity Technologies, Choosing a Render Pipeline.



DRAFT

Graphics APIs and Shaders in Game Development 21

Shader "Example/BasicShader"
{

SubShader
{

Tags { "RenderType" = "Opaque" }
Pass
{

HLSLPROGRAM
#pragma vertex vert
#pragma fragment frag

void vert() { /* Vertex Shader Code */ }
void frag() { /* Fragment Shader Code */ }
ENDHLSL

}
}
Fallback "Diffuse"

}

Listing 2. Example of a basic ShaderLab/HLSL shader in Unity.

use37. CG is retained for backward compatibility but lacks compatibility with newer pipelines and their
advanced features38.

Shader Graph

Shader Graph is Unity’s node-based tool for creating shaders visually without writing code. This tool
simplifies working with advanced effects and material properties, making it accessible even for developers
with no experience in HLSL or ShaderLab. Shader Graph integrates tightly with URP and HDRP, but for
the Built-in Pipeline, it only receives bug fixes and no new features39.

Shaders in Shader Graph are constructed using nodes, which can be combined to create complex
effects. For larger projects, developers can create Subgraphs, which can be saved and reused in other
Shader Graphs, improving organization and maintainability. Shader Graph also supports Custom Function
Nodes, enabling the inclusion of HLSL code to extend functionality. This is particularly useful for special
customizations or approximations that cannot be achieved or optimized using standard nodes.

Shader Graph manages its integration with Unity’s rendering systems and lighting models automatically,
ensuring that shaders interact seamlessly with scenes and light sources. It supports the rendering modes of
URP and HDRP (e.g., forward and deferred rendering), which means that lighting and shadow calculations

37. Unity Technologies, GLSL Shader Programs.
38. Unity Technologies, Writing Shaders for the Universal Render Pipeline.
39. Unity Technologies, Choosing a Render Pipeline.



DRAFT

22 EaDania

are handled without requiring additional configuration. This feature is especially advantageous in HDRP,
where Shader Graph leverages advanced lighting models that can be challenging to implement manually.

Balacing Visual workflow and Code
Shader Graph offers an intuitive visual workflow but also includes options for extending functionality
through Custom Function Nodes, which enable the addition of HLSL code. By referencing external HLSL
files, developers can modify parameters such as brightness, color, or lighting effects while still leveraging
Unity’s existing rendering pipeline and lighting systems. This hybrid approach combines the ease of visual
construction with the precision of coding.

However, Custom Function Nodes are subject to certain limitations. They rely on Unity-specific syntax,
and parameters must be defined and referenced with precise string matches in Shader Graph’s interface.
This dependency on Unity’s conventions can make code less flexible and more prone to errors if parameters
are mismatched. While Custom Function Nodes do not offer the same level of freedom as pure HLSL, they
provide a balanced approach, enabling visual workflows to coexist with Unity-specific coding conventions.

Although Shader Graph provides ease of use and visual construction, it has limitations in terms of
low-level optimization and hardware-specific tailoring compared to HLSL-based shaders. Shader Graph
depends on Unity’s internal rendering pipeline, making it less flexible than HLSL for targeting specific
hardware features or graphics APIs.

Unreal: Rendering And Presets
Unreal Engine uses a unified rendering pipeline, augmented by rendering presets that adapt the engine’s
behavior to different platforms and hardware capabilities. These presets configure the rendering features by
toggling options and scaling their complexity to balance performance and visual fidelity. Unlike Unity’s
approach with distinct render pipelines, Unreal Engine uses presets to optimize rendering settings while
maintaining a single, flexible pipeline.40

Preset Types
Unreal Engine organizes rendering presets along two main dimensions:
• Target Platform:

– Desktop and Console: Designed for high-performance systems, enabling advanced features such
as Lumen (dynamic global illumination) and Nanite (virtualized geometry). These platforms
prioritize photorealism and high graphical fidelity.41

– Mobile: Scaled for smartphones and tablets, where performance takes precedence. Many high-end
features are reduced in complexity or replaced with more efficient alternatives to accommodate
hardware limitations.

• Quality Preset:
– Maximum Quality: Activates high-end graphical features, such as real-time lighting and high-

resolution textures, making it ideal for premium hardware. For example, platforms supporting
Shader Model (SM) 6+ enable features like Nanite and advanced Lumen settings.

– Scalable Quality: Disables or simplifies features to ensure compatibility with less powerful
hardware. This includes relying on baked lighting instead of real-time lighting or reducing shadow
resolution.

40. Epic Games, Supported Features by Rendering Path for Desktop with Unreal Engine.
41. Epic Games, Nanite Virtualized Geometry in Unreal Engine.



DRAFT

Graphics APIs and Shaders in Game Development 23

These presets provide a flexible starting point for balancing performance and quality, particularly for
multi-platform projects.

How Rendering Presets Work in Unreal Engine

Rendering presets are implemented using Device Profiles, which determine the default settings for specific
platforms. These profiles dynamically adjust engine features by toggling console variables that define
Unreal’s rendering capabilities.42 For example:
• On high-end platforms, Lumen may run at full resolution with real-time dynamic lighting, while on

mobile it may revert to baked lighting or lower-quality approximations.
• Nanite, reliant on SM 6+, is automatically disabled on platforms that do not support this SM, such as

older Vulkan configurations.43

These profiles ensure that projects can scale automatically across devices, although developers can manually
override these settings for more granular control.

Rendering Modes in Unreal Engine

Unreal Engine primarily uses Deferred Rendering as its default mode, optimized for high-fidelity projects
with complex lighting setups. Unlike Unity, where different pipelines (e.g., URP for forward rendering and
HDRP for deferred) dictate the rendering mode, Unreal offers a unified pipeline that dynamically adjusts
based on the project’s requirements.

Deferred rendering in Unreal integrates seamlessly with advanced features like Lumen and Nanite,
making it suitable for PC and console platforms where performance and visual fidelity are priorities. For
scenarios requiring lower overhead, such as VR or mobile platforms, Unreal supports Forward Rendering
and Forward+, enabling efficient management of dynamic lights through clustered lighting techniques.

While developers have the flexibility to choose a rendering mode, the engine’s presets and device
profiles often determine the optimal mode automatically, streamlining the workflow. This ensures that
Unreal’s rendering modes are both adaptable and deeply integrated with its core systems.

Customization and Overrides

While presets are an efficient way to manage rendering, developers retain the ability to customize them. For
instance:
• Device Profiles can be modified directly to adjust settings for a specific device or platform. This

includes enabling or disabling Lumen Reflections or setting fallback options for unsupported hardware
features.

• Developers can override presets at runtime to provide end-users with options, such as toggling between
"Performance Mode" and "Cinematic Mode" on consoles.

These overrides highlight the flexibility of Unreal’s rendering architecture while allowing developers to
fine-tune settings for specific scenarios.

Challenges and Documentation Gaps

While Unreal Engine’s rendering presets are robust, understanding the interaction between presets, device
profiles, and platform-specific GPU APIs can be complex. For example:

42. Epic Games, Customizing Device Profiles and Scalability in Unreal Engine Projects for Android.
43. Epic Games, Nanite Virtualized Geometry in Unreal Engine.



DRAFT

24 EaDania

• Nanite and Lumen are heavily dependent on GPU capabilities, such as support for SM 6+. If
fallback solutions are not implemented, developers risk performance bottlenecks or visual artifacts on
unsupported hardware.44

• Documentation gaps: While Unreal’s documentation provides overviews of supported features across
rendering paths, details about specific interactions and configurations across all platforms remain sparse.
Developers often rely on community resources or trial and error for deeper insights.

Despite these challenges, Unreal’s rendering presets provide a powerful mechanism for scaling visual
quality and performance across diverse platforms.

RHI: Translating Rendering Code to GPU APIs

Unreal Engine’s RHI is a critical abstraction layer that ensures compatibility between Unreal’s rendering
systems and a wide range of GPU APIs. By acting as a translator, RHI simplifies cross-platform
development and ensures that rendering features function correctly, regardless of the underlying hardware
and API.

The Role of RHI in Shader Compilation and APITranslation

The RHI automates the process of adapting Unreal Engine’s rendering features to the target platform’s
GPU API. This involves several steps:
1. Shader compilation: Unreal shaders, written in HLSL or created visually in the Material Editor, are

first processed by the RHI. The RHI ensures that shaders are compiled into the appropriate format for
the target API:45

• DirectX shaders are compiled into HLSL bytecode.
• Vulkan shaders are converted into SPIR-V, Vulkan’s native shader language.
• Metal shaders are translated into Metal Shading Language (MSL).
• OpenGL/OpenGL ES shaders use GLSL.
This process ensures that shaders written once in Unreal can run seamlessly on multiple platforms
without requiring manual adaptation by developers.

2. Runtime Adaptation:
During runtime, RHI dynamically selects the appropriate API based on the platform and hardware
capabilities.
For example:
• On a high-end Windows PC, RHI may default to DirectX 12 to leverage ray tracing and other

advanced features.
• On mobile, RHI might fall back to OpenGL ES if Vulkan is unavailable or unsupported by the

hardware.
This automatic adaptation allows Unreal to scale its rendering features while maintaining compatibility
with older or less capable hardware.

3. Resource Management:
• On Vulkan, RHI manages descriptor sets and ensures efficient use of GPU memory.
• On Metal, RHI optimizes the rendering pipeline to align with Apple’s architecture.

4. Feature Fallbacks:
• A project using Lumen’s dynamic lighting may fall back to baked lighting on hardware that lacks

real-time global illumination support.
• Nanite’s virtualized geometry automatically switches to traditional polygon-based rendering on

unsupported platforms.

44. Epic Games, Supported Features by Rendering Path for Desktop with Unreal Engine.
45. Epic Games, Rendering Hardware Interface (RHI) Overview.



DRAFT

Graphics APIs and Shaders in Game Development 25

Advantages of RHI in Cross-Platform Development
RHI provides several key benefits for developers:

• Platform-Agnostic Development: Developers can focus on creating high-quality visuals without
worrying about the intricacies of each GPU API. RHI ensures that the same rendering code works
across all supported platforms.

• Unified Shader Workflow: Whether using Material Editor or HLSL, developers write shaders once,
and RHI ensures they are compiled correctly for each target platform.

• Scalability: RHI’s dynamic adaptation allows Unreal to deliver consistent performance and visuals
across a wide range of devices, from mobile phones to high-end gaming PCs.

Limitations and Developer Considerations
While RHI simplifies many aspects of rendering, it also introduces certain challenges:

• Performance Overheads: Abstracting API-specific details can introduce minimal overhead. Advanced
developers may need to fine-tune settings for optimal performance on specific platforms.

• Fallback Complexity: Developers targeting a wide range of hardware must implement fallback
solutions to handle features like Lumen and Nanite on unsupported platforms.

Practical Example: Shader Compilation Pipeline
To illustrate RHI’s functionality, consider a shader written in HLSL for a project targeting multiple platforms:

1. The shader is authored using Unreal’s Material Editor or written in HLSL for specific effects.
2. During the packaging process, RHI compiles the shader:

• Converts HLSL to DirectX bytecode for Windows platforms.
• Translates HLSL to SPIR-V for Vulkan (e.g., Android or Linux).
• Converts the shader into MSL for Apple’s Metal API.

3. At runtime, RHI ensures the shader is executed correctly by the target GPU API, adapting to
platform-specific constraints like texture formats or memory layouts.

Shader Workflow in Unreal Engine
In Unreal Engine, materials serve as the fundamental bridge between the visual appearance of an object and
the underlying shader code. Materials dictate how a surface interacts with light, including properties such
as color, reflectivity, bumpiness, and transparency. These surface properties are determined by combining
textures, Material Expressions, and configurable settings within the Material Editor. In essence, materials
define every visual aspect of a surface, guiding the render engine on how to process lighting and shading
for objects in the scene.

Creating Materials with the Material Editor
The Material Editor is Unreal’s primary tool for creating shaders visually through node-based Material
Expressions. These expressions are translated into HLSL shaders during compilation, which are subse-
quently optimized for specific GPU architectures. Developers work with the main material node, defining
parameters such as blend modes and shading models. For instance, changing the blend mode from Opaque
to Translucent unlocks additional parameters, like opacity control, that are not available in the opaque
configuration46.

46. Epic Games, Essential Unreal Engine Material Concepts.



DRAFT

26 EaDania

One of the most powerful features of the Material Editor is its ability to preview the generated shader
code. While this code is read-only, it provides insights into the complexity of Unreal’s integrated shading
systems. For example, a default-lit opaque material can generate around 5000 lines of HLSL code due to the
inclusion of Unreal’s advanced lighting and reflection models. This tightly integrated architecture ensures
that developers focus primarily on material inputs, while Unreal handles the complexities of rendering,
including multi-platform quality settings and SM optimizations.

Platform-Specific Optimization and Scalability

The Material Editor includes tools like Platform Stats, allowing developers to analyze shader instruction
counts for different configurations, such as Vulkan Mobile SM5 or DirectX PC SM6. This provides a direct
way to assess the resource usage of materials across various platforms. Unreal’s scalability system further
supports performance optimization by automatically toggling features or adjusting quality levels based
on the target platform. For instance, a material designed for high-end PC rendering might disable certain
real-time lighting features when running on mobile hardware. This flexibility ensures that shaders scale
appropriately without manual intervention47.

Reusability with Material Functions

To simplify shader workflows, Unreal Engine supports Material Functions, which encapsulate reusable
combinations of Material Expressions. These functions streamline shader development, enabling developers
to apply shared logic across multiple materials. Unreal provides a library of standard Material Functions
that can be explored and extended for specific use cases, enhancing both productivity and consistency
across projects.

Extending the Material Editor with Custom HLSL

For scenarios where advanced functionality is required, Unreal provides a Custom Expression node within
the Material Editor. This node allows developers to write HLSL code directly, defining custom inputs and
outputs. However, the Custom Expression node comes with certain limitations:
• It does not support constant folding, an optimization Unreal uses to reduce shader instruction calls

automatically.
• Variables cannot be mutated directly; instead, the node requires explicit return values for all calculations.
• Newly created structs cannot include parameters unless defined at the outermost scope.
While the Custom Expression node offers flexibility, it is recommended for use only when necessary
functionality cannot be achieved with existing Material Expressions. Developers can leverage Platform
Stats to ensure that the custom logic does not introduce significant performance overhead48.

Integration with Unreal’s Rendering Systems

Unreal’s Material Editor seamlessly integrates with its rendering architecture, enabling developers to
focus on inputs while Unreal manages the underlying complexities. This includes dynamic adaptation to
platform-specific constraints and multi-quality settings, such as low, medium, high, and epic, which allow
features to be toggled based on SMs or device profiles. For example, a material using Lumen for dynamic
global illumination might automatically fallback to baked lighting on unsupported hardware, demonstrating
Unreal’s robust scalability systems.

47. Epic Games, Unreal Engine Material Editor UI.
48. Epic Games, Custom Material Expressions in Unreal Engine.



DRAFT

Graphics APIs and Shaders in Game Development 27

Summary of Unreal Shader Workflow
Unreal Engine’s Material Editor provides an efficient, scalable framework for creating and managing
shaders. By combining visual workflows with the ability to extend functionality through HLSL, developers
can achieve a balance between customization and ease of use, ensuring optimized performance and visual
fidelity across diverse platforms.

Rendering in Godot Engine
Godot Engine employs a forward and forward+ rendering architecture, tailored to deliver optimal performance
and visual quality across a diverse range of platforms. Unlike engines like Unreal and Unity, which include
deferred rendering pipelines for high-end scenarios, Godot focuses on forward and forward+ to maintain
simplicity, memory efficiency, and compatibility. This decision aligns with Godot’s commitment to
scalability and accessibility for developers.49

Renderer Options and Compatibility
When starting a new project, Godot provides three renderer options:
• Forward+ (Standard): Optimized for high-performance platforms, using the RenderingDevice

abstraction to support modern APIs like Vulkan, DirectX 12, and Metal (via MoltenVK). This is the
default renderer for most projects, offering clustered lighting and advanced effects.

• Mobile Renderer: A lightweight variant designed for low-power and mobile devices, also using the
RenderingDevice abstraction. It prioritizes performance over visual fidelity, scaling down effects where
needed.

• Compatibility Renderer: Uses OpenGL exclusively (OpenGL 3.3 on desktop, OpenGL ES 3.0 on
mobile). It is intended for legacy hardware, lacking clustered lighting and advanced effects available in
other renderers.

The Compatibility renderer bypasses the RenderingDevice abstraction, relying solely on OpenGL for
rendering commands. In contrast, the Forward+ and Mobile renderers utilize the RenderingDevice to
ensure cross-platform compatibility and leverage modern GPU features.

Forward and Forward+ Rendering
Godot utilizes forward rendering for simpler lighting setups, particularly on mobile and low-end hardware,
where performance and compatibility are paramount. Forward rendering calculates lighting directly in the
fragment shader, limiting the number of dynamic lights but keeping computational costs low.

Forward+ builds upon this approach with clustered lighting. By dividing the screen into clusters and
associating lights with each cluster, forward+ supports numerous dynamic light sources more efficiently.
This method is particularly advantageous on platforms capable of handling SM 4.5 or higher, enabling
Godot to scale its lighting complexity based on hardware capabilities.

Unlike Unity’s forward+ implementation, which integrates deferred-like features, Godot’s forward+ is
streamlined for performance. This ensures compatibility across Vulkan, DirectX 12, OpenGL, and other
supported APIs.

Why Godot Avoids Deferred Rendering
Godot explicitly avoids deferred rendering due to its higher memory requirements and the complexity of
implementing G-buffer storage. Deferred rendering is advantageous for scenes with numerous dynamic

49. Godot Engine Documentation Team, Internal Rendering Architecture.



DRAFT

28 EaDania

light sources, but it comes at the cost of increased bandwidth and memory usage. These trade-offs conflict
with Godot’s focus on being lightweight and accessible across a wide range of devices.

By relying on forward and forward+, Godot avoids the overhead of deferred rendering while still
supporting multiple light sources effectively. This decision simplifies the rendering pipeline and reduces
the burden on lower-end and mobile devices.

GPU API Support and RenderingDevice Abstraction
Starting with Godot 4.0, Vulkan became the default rendering backend, marking a significant shift from
OpenGL ES 3.0 and OpenGL ES 2.0. Vulkan enables advanced features such as clustered forward+ lighting
and real-time global illumination while providing superior GPU utilization.

To ensure compatibility with non-Vulkan platforms, Godot leverages MoltenVK for Metal API support
on macOS and iOS. Additionally, Godot now includes support for DirectX 12, broadening its reach to
high-performance Windows systems. OpenGL remains available for legacy devices, particularly with
OpenGL ES 3.0 and ES 2.0 for mobile and older hardware.

Central to this multi-API support is Godot’s RenderingDevice abstraction, which decouples rendering
code from specific GPU APIs. This abstraction layer provides a unified interface for developers, while the
engine handles the translation of rendering commands to the target API. For example:
• Vulkan commands are mapped directly for platforms supporting Vulkan natively.
• Metal compatibility is achieved via MoltenVK, translating Vulkan commands to Metal.
• DirectX 12 commands are generated for Windows platforms requiring high-end graphical features.
• OpenGL commands are used for devices with legacy hardware or limited Vulkan support.
This approach ensures that Godot’s rendering pipeline can adapt seamlessly across platforms while
preserving a consistent development experience.

Lighting and APIConstraints
Godot’s GPU APIsupport influences the lighting capabilities available on different platforms:
• Vulkan: Fully supports clustered forward+ lighting, enabling advanced effects like real-time global

illumination and high-quality shadows.
• DirectX 12: Provides parity with Vulkan for advanced features on Windows platforms, including

support for clustered lighting and modern GPU optimizations.
• Metal (via MoltenVK): Enables Vulkan-based features on macOS and iOS, albeit with slight

performance trade-offs.
• OpenGL ES 3.0: Supports basic forward rendering with dynamic lighting but lacks the clustered

lighting capabilities of Vulkan and DirectX 12.
• OpenGL ES 2.0: Limited to minimal lighting features, suitable for legacy devices requiring basic

rendering pipelines.
The RenderingDevice abstraction ensures these features are dynamically adjusted based on platform
constraints, with Godot developers focusing on high-level material and shader definitions rather than
low-level API management.

Shader Workflow in Godot Engine
Godot Engine provides two primary methods for creating shaders: code-based shaders written in Godot’s
custom shader language and node-based shaders created in the Visual Shader Editor. Each approach offers
flexibility and scalability, allowing developers to optimize workflows based on project requirements.

Custom Shaders in Godot
Godot’s custom shader language is designed to be accessible yet powerful, closely resembling GLSL in
syntax and functionality. This language simplifies shader development by automating many tasks, including:
• Declaring vertex attributes such as position, normal, and UV coordinates.



DRAFT

Graphics APIs and Shaders in Game Development 29

• Calculating the final vertex position in clip space.
• Passing interpolated attributes like UV coordinates and normals from the vertex shader to the fragment

shader.
These default operations mean that leaving the vertex shader empty results in standard transformations
being applied automatically. However, developers can override or modify these defaults to implement
custom transformations or behaviors.

Godot’s shaders follow a three-stage pipeline: vertex, fragment, and light. Data can be passed
between stages using varying variables, which allow developers to send interpolated values from the
vertex to the fragment shader, and from there to the light shader. For example, normals can be transformed
into world space in the vertex shader and accessed in the light shader for custom lighting calculations.
Shader types in Godot include:
• Spatial Shaders: For 3D rendering, supporting advanced effects like custom lighting models.
• CanvasItem Shaders: For 2D rendering, targeting UI elements or sprites.
• Particle Shaders: For controlling particle effects.
• Sky and Fog Shaders: Specialized shaders for atmospheric effects.

Visual Shaders in Godot
The Visual Shader Editor in Godot offers a node-based interface for creating shaders, making it easier for
developers without extensive coding experience. It consists of three main output nodes: Vertex, Fragment,
and Light, which correspond to the stages in Godot’s rendering pipeline.

Developers can use the VaryingSetter node to define and transfer custom interpolated values between
stages. For instance, a varying variable defined in the vertex shader can be interpolated and used in both the
fragment and light stages.

For advanced customization, the Expression node allows developers to write Godot shader language
code within the visual workflow. This node supports custom inputs and outputs, enabling developers to
combine the flexibility of code with the simplicity of visual workflows.

Balancing Code-Based and Visual Shaders
Godot’s shader workflows provide developers with a choice between code-based and visual approaches,
each suited to different use cases:
• Code-Based Shaders: Ideal for projects requiring precise control over rendering or advanced effects.

The streamlined syntax and automatic operations reduce boilerplate code, allowing developers to focus
on customization.

• Visual Shaders: Useful for rapid prototyping or when collaborating with non-programmers, such as
artists. The Visual Shader Editor’s intuitive interface makes it easy to iterate on designs while still
supporting custom logic through the Expression node.

Godot’s flexibility ensures that both methods integrate seamlessly with the engine’s rendering systems,
allowing developers to balance ease of use with the power of custom shader development.

Comparison of Shader Workflows Across Engines
Shader workflows vary significantly between Unreal Engine, Unity, and Godot, especially when comparing
how developers interact with code-based shaders, node-based visual shaders, and engine-specific rendering
systems.

Code-Based Shaders comparison

Unreal Engine
Writing custom HLSL shaders in Unreal Engine is often considered complex and impractical for most
workflows. While the engine provides significant power and flexibility, developers must understand Unreal’s



DRAFT

30 EaDania

intricate rendering pipeline, including the RHI and shading models. Hooking into existing lighting systems
or extending default behaviors generally requires an in-depth knowledge of the engine’s internals.

According to a discussion by user Shadowriver on the Unreal Forums, the process of writing custom
HLSL shaders in Unreal Engine 4 is particularly challenging, given that the engine lacks built-in support
for custom HLSL shaders as a core feature. Instead, developers must rely on unconventional workarounds,
such as modifying engine source code or integrating custom rendering passes.50 While it is possible that
some of these limitations have been addressed in Unreal Engine 5, no official documentation confirms
significant improvements in this regard.

For these reasons, most developers rely on the Material Editor, which abstracts shader complexity
and integrates seamlessly with Unreal’s rendering systems. Writing custom HLSL shaders is therefore
typically reserved for highly specific or experimental use cases due to the steep learning curve and technical
challenges involved.

Unity
Unity offers a more accessible approach to code-based shaders through its ShaderLab abstraction. ShaderLab
provides a unified interface for defining shader properties, passes, and interactions with Unity’s rendering
systems. Developers write shaders in HLSL, CG, or GLSL, with ShaderLab handling the platform-specific
implementation details.

One key advantage of Unity’s approach is the ability to leverage low-level features for shader
optimization. Developers can set custom compiler flags, target specific SMs, and fine-tune behavior for
different hardware configurations. For example, ShaderLab allows advanced users to optimize shaders by
specifying separate passes for forward or deferred rendering, which makes it a powerful tool for developers
familiar with traditional rendering pipelines. HLSL is recommended for SRP variant pipelines, ensuring
compatibility and optimal performance.

While ShaderLab simplifies shader creation, integrating with existing systems like Unity’s built-in
deferred lighting model requires a deep understanding of Unity’s rendering architecture. Developers must
manually adapt their shaders to interact with the G-buffer and other engine-specific components. This
complexity can make high-level integrations challenging compared to Godot, but it provides significant
flexibility for optimizing low-level performance by using compiler tags directly in the code.

However, Unity’s Shader Graph offers a streamlined alternative for creating and integrating shaders.
Shader Graph enables developers to visually design materials while seamlessly integrating with Unity’s
existing lighting models and rendering features. Through the use of a Custom Node, developers can
also write and execute custom HLSL code directly within Shader Graph. Unlike Unreal Engine, Unity’s
documentation does not mention any performance loss associated with using the Custom Node for shader
development. Additionally, Unity’s Custom Node supports referencing external files or snippets, providing
developers with added flexibility to manage and reuse shader code. This approach balances accessibility
and customization, allowing developers to hook into Unity’s lighting systems or extend functionality with
minimal effort compared to pure code-based shaders. While Shader Graph lacks the low-level optimization
flexibility of ShaderLab, its intuitive workflow, integration capabilities, and support for custom code make
it a preferred choice for many modern Unity projects.

Godot
Godot takes a streamlined approach to code-based shaders with its own custom shader language. This
language is designed to resemble GLSL and HLSL, making it approachable for developers familiar with
these standards. However, Godot’s shader system simplifies many tasks by automating common operations:
• Vertex Attributes: Default vertex attributes, such as position and normals, are automatically passed to

the vertex shader, and their interpolated values are made available in the fragment shader.

50. Shadowriver, Writing Custom HLSL Shaders.



DRAFT

Graphics APIs and Shaders in Game Development 31

• Built-in Varyings: Developers can access interpolated values (e.g., UV coordinates) or modify them
during processing. This system eliminates the need to manually define and manage varyings between
shader stages.

• Default Behavior: If a developer leaves the vertex shader empty, Godot automatically calculates
clip-space positions and passes through attributes like UVs and normals.
This combination of automation and flexibility allows developers to focus on the specific behavior they

want to implement without worrying about boilerplate setup. Additionally, Godot’s built-in shader editor
provides immediate feedback, streamlining the debugging process and making shader development highly
efficient.

Unlike Unity, Godot does not require an external tool for shader editing, and errors are displayed
directly in the editor. Furthermore, the ability to access built-in passes, such as the light pass, enables
developers to easily hook into Godot’s existing lighting systems. By combining automation, flexibility, and
real-time feedback, Godot offers an intuitive and efficient workflow for custom code based shaders.

Key Comparisons
• Integration: Unreal offers the most powerful rendering system but requires extensive knowledge to

create custom code based shaders, especially when integrating with existing systems. Unity simplifies
the workflow with ShaderLab but requires additional effort for deep integrations. Godot strikes a
balance by automating most tasks while allowing manual overrides for custom behavior. Yet also has
the least advanced existing rendering features.

• Optimization: Unity provides robust tools for targeting specific platforms and optimizing shaders
with custom flags and models. Godot automates much of this, simplifying development at the cost of
granular control. Unreal offers unmatched flexibility for optimization but at the cost of a steep learning
curve.

• Development Workflow: Godot’s built-in editor provides immediate feedback and access to all passes,
making it the most developer-friendly environment for rapid shader iteration. Unity relies on external
tools, while Unreal’s code based workflows are close to none existing..

Comparison of Visual Node-Based Systems
The visual node-based systems for creating shaders in Unreal Engine, Unity, and Godot reflect their distinct
approaches to balancing ease of use, flexibility, and integration with their respective rendering architectures.

Unreal Engine
Unreal Engine’s Material Editor stands out as the most feature-rich among the three engines, offering an
extensive library of nodes and tight integration with advanced rendering systems such as Lumen and Nanite.
This integration allows developers to use these systems seamlessly, with the Material Editor managing
complexities like lighting and geometry optimization behind the scenes. Adjusting material properties
automatically hooks into these systems, ensuring optimal performance and visual quality.

Developers seeking more control can use Custom Expression nodes to write HLSL directly. While
powerful, Epic Games advises caution when using Custom Expressions due to their inability to leverage
optimizations like constant folding, which can lead to performance overheads. Despite this, the ability to
write custom HLSL code and view the generated shader provides advanced users with significant flexibility,
though the complexity of Unreal’s rendering system can make this daunting for newcomers. Unreal’s strong
official documentation and vibrant community further enhance the learning experience, with numerous
tutorials and resources available to guide developers in mastering the Material Editor.

Unity
Unity’s Shader Graph has matured significantly, particularly for the URP and HDRP. Unity’s node editor
is well-rounded and highly capable, allowing developers to create sophisticated materials efficiently. The



DRAFT

32 EaDania

Shader Graph provides a streamlined experience that accommodates developers of varying expertise,
enabling them to create complex shaders without requiring in-depth knowledge of rendering pipelines.

Custom Nodes in Shader Graph allow developers to integrate HLSL code seamlessly. Unlike Unreal’s
Custom Expressions, Unity’s Custom Nodes support referencing external files or snippets, enhancing
flexibility. Additionally, Unity’s documentation does not mention any significant performance trade-offs
associated with Custom Nodes, making them a practical choice for developers who need advanced
functionality.

Unity benefits from broad community support, with a wealth of tutorials and guides available. However,
frequent updates to Shader Graph have sometimes led to compatibility issues between versions, making it
necessary for developers to adapt older tutorials to newer versions. Nevertheless, Unity’s active community
and official resources mitigate these challenges, ensuring ample support for developers navigating Shader
Graph’s evolution.

Godot
Godot’s visual shader editor takes a distinct approach, offering separate graphs for vertex, fragment, and
light passes. This structure gives developers fine-grained control over the shader workflow. However, it
also requires manual management of interpolated values between passes, adding complexity to shader
development. While this setup can feel cumbersome for materials that utilize all three passes, it also
provides greater control over the data flow, allowing developers to customize behavior precisely.

A unique advantage of Godot is that the generated shader code remains in Godot’s proprietary shader
language, which is concise and highly readable for users familiar with the engine. Additionally, developers
can use Custom Nodes to write code directly in Godot’s shader language. While this approach limits the
ability to reference external files, it simplifies debugging and integration, especially given the built-in
shader editor that provides immediate feedback during development.

Summary
Unreal Engine’s Material Editor excels in complexity and integration, making it the go-to choice for
high-fidelity projects, albeit with a steep learning curve for advanced customizations. Unity’s Shader Graph
strikes a balance between accessibility and functionality, offering flexibility for developers while maintaining
a straightforward workflow. Despite occasional compatibility challenges with older tutorials, Unity benefits
from broad community support that ensures a strong foundation for developers. Godot’s visual shader
editor prioritizes modularity and control, making it ideal for those who value direct manipulation of shader
stages but potentially overwhelming for complex materials spanning multiple passes. Each system reflects
its engine’s philosophy, catering to different developer needs and expertise levels.

Discussion
The findings presented in this paper highlight key trends in shader programming, rendering pipelines,
and engine adoption, with significant implications for developers choosing tools and workflows for game
development.

Engine Adoption and API Trends
The analysis of released games over the past five years demonstrates that Unity and Unreal Engine dominate
the market, driven by their mature tools, rendering pipelines, and broad platform support. Both engines
primarily rely on modern graphics APIs such as Vulkan, DirectX 12, and Metal to achieve high-performance
rendering on PC, mobile, and macOS platforms.

Console platforms introduce additional considerations due to their unique GPU architectures and
associated APIs. On PlayStation, developers use the GNM API or the higher-level Graphics Core Next
Metal Extended (GNMX) abstraction layer. Shaders for PlayStation are typically authored in PSSL,



DRAFT

Graphics APIs and Shaders in Game Development 33

which shares syntactic and structural similarities with HLSL. Similarly, on Xbox, games are built using
DirectX-based APIs, where shaders are written in an HLSL variant tailored to the Xbox GPU. These
platform-specific shading languages can often be directly translated or compiled into HLSL, simplifying
shader authoring and enabling efficient cross-platform development for AAA projects.

The widespread use of HLSL across modern engines and APIs, including Vulkan (through SPIR-V
compilation), reinforces its position as the shader language of choice for high-fidelity rendering. HLSL’s
flexibility and strong tooling support make it particularly well-suited for projects targeting both PC and
console platforms.

While modern engines are moving towards Vulkan and Metal for improved performance, the role of
OpenGL persists in specific contexts. OpenGL remains relevant for lightweight engines and educational
purposes, where its simplicity and cross-platform compatibility provide an ideal foundation for learning
rendering concepts. Engines like Godot still use OpenGL for their compatibility renderer, while frameworks
such as Ren’Py, GameMaker, and RPG Maker continue to rely on OpenGL due to its ease of use and
suitability for less demanding applications.

This distinction between modern APIs for high-fidelity rendering and OpenGL for lightweight or
educational projects highlights the importance of aligning API and shader language choices with project
goals and platform requirements.

Implications of Visual Tools
The rise of visual shader tools like Unreal Engine’s Material Editor, Unity’s Shader Graph, and Godot’s
Visual Shader Editor has transformed shader development. These tools abstract much of the complexity
of shader programming, enabling designers and non-specialized developers to create advanced effects
without writing shader code.

However, the value of these tools is maximized when developers possess a foundational understanding
of the rendering pipeline. Tasks such as performance optimization, troubleshooting, and effect customization
do not necessarily require low-level shader authoring, but they do require an awareness of what happens
behind the scenes. A clear understanding of vertex processing, fragment shading, and GPU resource
management allows developers to make informed decisions, optimize their shaders, and fully leverage
visual tools.

Balancing Fidelity and Accessibility
The findings highlight a fundamental trade-off between rendering fidelity and accessibility in engine
selection.

Unreal Engine excels in AAA development, offering tools like Lumen and Nanite that push the
boundaries of photorealism. However, the complexity of these tools, coupled with Unreal’s advanced
rendering pipelines, demands greater expertise and a steeper learning curve, at least for customizability.

Unity provides a balance between accessibility and advanced rendering features, with its URP catering
to scalable projects and its HDRP enabling high-fidelity visuals. Unity’s flexibility makes it ideal for
projects targeting multiple platforms, from mobile to consoles.

Godot focuses on lightweight workflows and forward rendering, making it particularly effective for
smaller teams, 2D projects, and less demanding 3D applications. While it lacks the advanced lighting
capabilities of deferred rendering pipelines, its streamlined approach and visual shader tools provide
accessible solutions that align with its goals.

While rendering workflows play a central role in engine selection, developers must also consider
factors like platform support, built-in systems for gameplay programming, and tools for designers and artists.
Engines like Unreal and Unity offer comprehensive ecosystems that cater to AAA and cross-platform
projects, whereas Godot prioritizes simplicity and efficiency for smaller-scale development.

Future Considerations
Future research could expand on these findings by:



DRAFT

34 EaDania

1. Benchmarking shader performance across visual tools and low-level code for advanced effects.
2. Analyzing the role of rendering pipelines in performance optimization for forward versus deferred

lighting.
3. Investigating emerging engines and lightweight tools targeting VR, AR, and mobile development.

Conclusion
This paper provides a detailed analysis of shader languages, graphics APIs, and shader workflows across
Unity, Unreal Engine, and Godot, with an emphasis on engine adoption trends and practical implications
for developers.

Key Findings
• Engine Adoption: Unity and Unreal Engine dominate the market, while Godot offers a strong

alternative for lightweight projects.
• API Trends: Modern APIs like Vulkan and Metal are increasingly replacing OpenGL in high-

performance engines, though OpenGL remains relevant for lightweight applications and educational
purposes.

• Shader Workflows: Visual tools simplify shader creation but require developers to maintain founda-
tional knowledge of rendering pipelines for optimization and advanced customization.

Practical Implications
Developers must align engine choice with project requirements:
• Unreal Engine provides superior tools for photorealism and large-scale projects.
• Unity balances accessibility, flexibility, and platform scalability.
• Godot excels in lightweight workflows and accessibility, making it ideal for smaller teams.

Final Remarks
While visual shader tools have democratized shader development, mastering the fundamentals of shader
programming remains critical. Modern engines and APIs provide abstraction layers that simplify cross-
platform development, but developers who understand the rendering pipeline at both high and low levels
will be best equipped to balance performance and visual fidelity across diverse platforms.

Supplementary Material
The data extraction tool used in this study is publicly available in the following repository: https:
//dev.azure.com/EMSTEADania/IGDBGetter/_git/IGDBGamesGetter. This repository contains the source
code for the C# program used to extract the dataset fields.
Additionally, all processed datasets, intermediate results, and analysis scripts are available at https://dev.
azure.com/EMSTEADania/IGDBGetter/_git/IGDBDataAnalyzer. These resources ensure transparency
and reproducibility of the study.

Appendix
References
Abramowicz, Kamil, and Przemysław Borczuk. 2024. Comparative Analysis of the Performance

of Unity and Unreal Engine in 3D Games. Journal of Computer Sciences Institute 30:53–60.

https://dev.azure.com/EMSTEADania/IGDBGetter/_git/IGDBGamesGetter
https://dev.azure.com/EMSTEADania/IGDBGetter/_git/IGDBGamesGetter
https://dev.azure.com/EMSTEADania/IGDBGetter/_git/IGDBDataAnalyzer
https://dev.azure.com/EMSTEADania/IGDBGetter/_git/IGDBDataAnalyzer


DRAFT

Graphics APIs and Shaders in Game Development 35

Epic Games. 2021. Warning: OpenGL is No Longer Supported for Desktop Platforms. https:
/ / forums.unrealengine.com/t /warning- opengl- is- no- longer- supported- for- desktop-
platforms/480923. Accessed: 2024-11-21.

Epic Games. Custom Material Expressions in Unreal Engine. https://dev.epicgames.com/
documentation/en- us /unreal - engine/custom- material - expressions- in- unreal - engine.
Accessed: 2024-12-04.

Epic Games. Customizing Device Profiles and Scalability in Unreal Engine Projects for Android.
https://dev.epicgames.com/documentation/en- us/unreal- engine/customizing- device-
profiles-and-scalability-in-unreal-engine-projects-for-android. Accessed: 2024-12-04.

Epic Games. Essential Unreal Engine Material Concepts. https : / / dev . epicgames . com /
documentation/en-us/unreal-engine/essential-unreal-engine-material-concepts. Accessed:
2024-12-04.

Epic Games. Nanite Virtualized Geometry in Unreal Engine. https://dev.epicgames.com/
documentation / en - us / unreal - engine / nanite - virtualized - geometry - in - unreal - engine.
Accessed: 2024-12-04.

Epic Games. Render Hardware Interface (RHI) in Unreal Engine. https://dev.epicgames.com/
documentation/en-us/unreal-engine/render-hardware-interface-in-unreal-engine. Accessed:
2024-12-04.

Epic Games. Rendering Hardware Interface (RHI) Overview. https://dev.epicgames.com/
documentation/en-us/unreal-engine/graphics-programming-overview-for-unreal-engine.
Accessed: 2024-12-05.

Epic Games. Supported Features by Rendering Path for Desktop with Unreal Engine. https:
/ / dev . epicgames . com/ documentation / en - us / unreal - engine / supported - features - by -
rendering-path-for-desktop-with-unreal-engine. Accessed: 2024-12-05.

Epic Games. Unreal Engine Material Editor UI. https://dev.epicgames.com/documentation/en-
us/unreal-engine/unreal-engine-material-editor-ui. Accessed: 2024-12-04.

Galvan, Alain. 2021. A Review of Shader Languages. https://alain.xyz/blog/a-review-of-
shader-languages. Accessed: 2024-11-21.

Godot Engine Developers. n.d.(a). Consoles — Godot Engine (stable) documentation in
English. https://docs.godotengine.org/en/latest/tutorials/platform/consoles.html. Accessed:
2024-11-21.

Godot Engine Developers. n.d.(b). Rendering Drivers in Godot 4. https://docs.godotengine.org/
en/stable/tutorials/rendering/rendering_drivers.html. Accessed: 2024-11-22.

Godot Engine Documentation Team. Internal Rendering Architecture. https://docs.godotengine.
org/en/stable/contributing/development/core_and_modules/internal_rendering_architectur
e.html. Accessed: 2024-12-05.

Hussain, Faizan, Afzal Hussain, Haad Shakeel, Nasir Uddin, and Turab Latif Ghouri. 2020. Unity
Game Development Engine: A Technical Survey. University of Sindh Journal of Information
and Communication Technology 4 (2):1–10. Available at <https://www.researchgate.net/
publication/348917348>.

Karis, Brian. 2013. Real Shading in Unreal Engine 4. Unpublished, Epic Games, Available at
<https://www.epicgames.com/>.

Khronos Group. n.d. High-Level Shader Language Comparison. https://docs.vulkan.org/guide/
latest/high_level_shader_language_comparison.html. Accessed: 2024-11-21.

Lee, HanSeong, SeungTaek Ryoo, and SangHyun Seo. 2019. A Comparative Study on the
Structure and Implementation of Unity and Unreal Engine 4. Korea Computer Graphics
Society 25 (4):17–24. https://doi.org/10.15701/kcgs.2019.25.4.17.

https://forums.unrealengine.com/t/warning-opengl-is-no-longer-supported-for-desktop-platforms/480923
https://forums.unrealengine.com/t/warning-opengl-is-no-longer-supported-for-desktop-platforms/480923
https://forums.unrealengine.com/t/warning-opengl-is-no-longer-supported-for-desktop-platforms/480923
https://dev.epicgames.com/documentation/en-us/unreal-engine/custom-material-expressions-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/custom-material-expressions-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/customizing-device-profiles-and-scalability-in-unreal-engine-projects-for-android
https://dev.epicgames.com/documentation/en-us/unreal-engine/customizing-device-profiles-and-scalability-in-unreal-engine-projects-for-android
https://dev.epicgames.com/documentation/en-us/unreal-engine/essential-unreal-engine-material-concepts
https://dev.epicgames.com/documentation/en-us/unreal-engine/essential-unreal-engine-material-concepts
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/render-hardware-interface-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/render-hardware-interface-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/graphics-programming-overview-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/graphics-programming-overview-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/supported-features-by-rendering-path-for-desktop-with-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/supported-features-by-rendering-path-for-desktop-with-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/supported-features-by-rendering-path-for-desktop-with-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-material-editor-ui
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-material-editor-ui
https://alain.xyz/blog/a-review-of-shader-languages
https://alain.xyz/blog/a-review-of-shader-languages
https://docs.godotengine.org/en/latest/tutorials/platform/consoles.html
https://docs.godotengine.org/en/stable/tutorials/rendering/rendering_drivers.html
https://docs.godotengine.org/en/stable/tutorials/rendering/rendering_drivers.html
https://docs.godotengine.org/en/stable/contributing/development/core_and_modules/internal_rendering_architecture.html
https://docs.godotengine.org/en/stable/contributing/development/core_and_modules/internal_rendering_architecture.html
https://docs.godotengine.org/en/stable/contributing/development/core_and_modules/internal_rendering_architecture.html
https://www.researchgate.net/publication/348917348
https://www.researchgate.net/publication/348917348
https://www.epicgames.com/
https://docs.vulkan.org/guide/latest/high_level_shader_language_comparison.html
https://docs.vulkan.org/guide/latest/high_level_shader_language_comparison.html
https://doi.org/10.15701/kcgs.2019.25.4.17


DRAFT

36 EaDania

Ludwig, Heiko. 2016. Mapping between HLSL and GLSL. https://anteru.net/blog/2016/
mapping-between-hlsl-and-glsl/. Accessed: 2024-11-21.

Ren’Py Developers. n.d. Ren’Py Visual Novel Engine. https : / / github .com/ renpy / renpy.
Accessed: 2024-11-22.

Sabir, Aqsa, Rahat Hussain, Akeem Pedro, and Lee Dongmin. 2024. Synthetic Data Generation
with Unity 3D and Unreal Engine for Construction Hazard Scenarios: A Comparative
Analysis. In Conference on Construction Hazard Scenarios. ResearchGate. Available at
<https://www.researchgate.net/publication/382888381>.

Shadowriver. 2018. Writing Custom HLSL Shaders. Epic Games Developer Community Forums.
Accessed: 2024-12-16. Available at <https://forums.unrealengine.com/t/writing-custom-
hlsl-shaders/424362>.

Šmíd, Antonín. 2017. Comparison of Unity and Unreal Engine. Bachelor’s Thesis. PhD diss.,
Czech Technical University in Prague, Faculty of Electrical Engineering. Available at
<https://www.cvut.cz/>.

Stenson, Richard, and Chris Ho. 2014. PlayStation Shader Language for PlayStation 4. https:
/ /www.gdcvault . com/play / 1019252 /PlayStation - Shading - Language - for. Accessed:
2024-11-21.

Szabat, Bartłomiej, and Małgorzata Plechawska-Wójcik. 2023. Comparative Analysis of Selected
Game Engines. Journal of Computer Sciences Institute 29:312–316.

Szafran, Kamil, and Małgorzata Plechawska-Wójcik. 2023. Impact of Changes in Graphics
Setting on Performance in Selected Video Games. Journal of Computer Sciences Institute
28:291–295.

Szelug, Wojciech. 2022. Comparative Analysis of the Performance of the Flax Engine and
Unity. Journal of Computer Sciences Institute 25:358–361.

Technologies, Unity. 2023. Unity’s Future with Render Pipelines. YouTube Video. Accessed:
2024-11-22. Available at <https://www.youtube.com/watch?v=o9AGkB9nnkc>.

Unity Technologies. 2023. Unity OpenGL Deprecation and Removal for macOS and Windows.
https : / / discussions . unity . com/ t / opengl - deprecation - and - removal - for - macos - and -
windows/888749. Accessed: 2024-11-21.

Unity Technologies. Choosing a Render Pipeline. https://docs.unity3d.com/Manual/choose-a-
render-pipeline.html. Accessed: 2024-11-22.

Unity Technologies. GLSL Shader Programs. https://docs.unity3d.com/6000.0/Documentation/
Manual/SL-GLSLShaderPrograms.html. Accessed: 2024-11-22.

Unity Technologies. n.d.(a). Graphics APIs on ios. https : / / docs . unity3d . com / 6000 . 0 /
Documentation/Manual/android-requirements-and-compatibility.html. Accessed: 2024-11-
22.

Unity Technologies. n.d.(b). Graphics APIs on ios. https : / / docs . unity3d . com / 6000 . 0 /
Documentation/Manual/ios-requirements-and-compatibility.html. Accessed: 2024-11-22.

Unity Technologies. n.d.(c). Graphics APIs on Windows. https://docs.unity3d.com/Manual/
GraphicsAPIs.html. Accessed: 2024-11-22.

Unity Technologies. Render Pipelines Feature Comparison. https://docs.unity3d.com/6000.0/
Documentation/Manual/render-pipelines-feature-comparison.html. Accessed: 2024-11-22.

Unity Technologies. Writing Shaders for the Universal Render Pipeline. https://docs.unity3d.
com/6000.0/Documentation/Manual/urp/writing-shaders-urp-basic-unlit-structure.html.
Accessed: 2024-11-22.

Wikipedia Contributors. n.d. GameMaker Studio Graphics APIs. https://en.wikipedia.org/wiki/
GameMaker. Accessed: 2024-11-22.

https://anteru.net/blog/2016/mapping-between-hlsl-and-glsl/
https://anteru.net/blog/2016/mapping-between-hlsl-and-glsl/
https://github.com/renpy/renpy
https://www.researchgate.net/publication/382888381
https://forums.unrealengine.com/t/writing-custom-hlsl-shaders/424362
https://forums.unrealengine.com/t/writing-custom-hlsl-shaders/424362
https://www.cvut.cz/
https://www.gdcvault.com/play/1019252/PlayStation-Shading-Language-for
https://www.gdcvault.com/play/1019252/PlayStation-Shading-Language-for
https://www.youtube.com/watch?v=o9AGkB9nnkc
https://discussions.unity.com/t/opengl-deprecation-and-removal-for-macos-and-windows/888749
https://discussions.unity.com/t/opengl-deprecation-and-removal-for-macos-and-windows/888749
https://docs.unity3d.com/Manual/choose-a-render-pipeline.html
https://docs.unity3d.com/Manual/choose-a-render-pipeline.html
https://docs.unity3d.com/6000.0/Documentation/Manual/SL-GLSLShaderPrograms.html
https://docs.unity3d.com/6000.0/Documentation/Manual/SL-GLSLShaderPrograms.html
https://docs.unity3d.com/6000.0/Documentation/Manual/android-requirements-and-compatibility.html
https://docs.unity3d.com/6000.0/Documentation/Manual/android-requirements-and-compatibility.html
https://docs.unity3d.com/6000.0/Documentation/Manual/ios-requirements-and-compatibility.html
https://docs.unity3d.com/6000.0/Documentation/Manual/ios-requirements-and-compatibility.html
https://docs.unity3d.com/Manual/GraphicsAPIs.html
https://docs.unity3d.com/Manual/GraphicsAPIs.html
https://docs.unity3d.com/6000.0/Documentation/Manual/render-pipelines-feature-comparison.html
https://docs.unity3d.com/6000.0/Documentation/Manual/render-pipelines-feature-comparison.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-basic-unlit-structure.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-basic-unlit-structure.html
https://en.wikipedia.org/wiki/GameMaker
https://en.wikipedia.org/wiki/GameMaker


DRAFT

Graphics APIs and Shaders in Game Development 37

Acronyms
GPU Graphics Processing Unit

API Application Programming Interface

HLSL High-Level Shader Language

GLSL OpenGL Shading Language

MSL Metal Shading Language

PSSL PlayStation Shader Language

SPIR-V Standard Portable Intermediate Representation for Vulkan

URP Universal Render Pipeline

HDRP High Definition Render Pipeline

RHI Rendering Hardware Interface

GNM Graphics Core Next Metal

GNMX Graphics Core Next Metal Extended

SM Shader Model

IGDB International Game Database

SRP Scriptable Render Pipeline

CG C for Graphics

Authors
Emil Stephansen is a assistant Lecturer at Erhvervsakademi Dania, specializing in game development,
shader programming, and network programming. He holds a Master’s degree in Computer Science from
Aarhus university and conducts research on rendering technologies, graphics APIs, and shader development.
Contact: EMST@eadania.dk.

Acknowledgements
This draft is currently under internal review.

Key Words
Game Engines, Shader Programming, Graphics APIs, Unity, Unreal Engine, Godot, Vulkan, DirectX 12,
Metal, OpenGL, HLSL, SPIR-V, Forward Rendering, Deferred Rendering, Visual Shader Editors, Material
Editor, Shader Graph



DRAFT

38 EaDania

TABLE A1. GPU API used on different platforms

Engine Platform API Notes

Unity PC (Microsoft Windows) DirectX12, DirectX11,
Vulkan, OpenGL, Open-
GLES3

OpenGL is deprecated
see51

Unity Mac Metal
Unity Linux OpenGL, Vulkan52

Unity PlayStation 5 GNM
Unity PlayStation 4 GNM53 GNM assumed based

on PS architecture; of-
ficial documentation
unavailable.

Unity Xbox Series X|S DirectX11, DirectX12
Unity Xbox One DirectX11, DirectX12
Unity Nintendo Switch NVN
Unity Android Vulkan, OpenGLES54

Unity iOS Metal55

Unity Web WebGL
Unreal PC (Microsoft Windows) DirectX12, DirectX11,

Vulkan, OpenGL
OpenGL is deprecated
see56

Unreal Mac Metal
Unreal Linux Vulkan, OpenGL OpenGL is deprecated

see57

Unreal PlayStation 5 GNM
Unreal PlayStation 4 GNM
Unreal Xbox Series X|S DirectX11, DirectX12
Unreal Xbox One DirectX11, DirectX12
Unreal Nintendo Switch NVN
Unreal Android Vulkan, OpenGLES
Unreal iOS Metal
Unreal Web WebGL
Godot58 PC (Microsoft Windows) DirectX12, Vulkan, Open-

GLES
Godot Mac Metal, OpenGLES Uses Vulkan transpiled to

Metal via MoltenVK.

Continued on next page

51. Unity Technologies, Unity OpenGL Deprecation and Removal for macOS and Windows.
52. Unity Technologies, Graphics APIs on Windows.
53. Stenson, Richard, and Chris Ho, PlayStation Shader Language for PlayStation 4.
54. Unity Technologies, Graphics APIs on ios.
55. Unity Technologies, Graphics APIs on ios.
56. Epic Games, Warning: OpenGL is No Longer Supported for Desktop Platforms.
57. Epic Games, Warning: OpenGL is No Longer Supported for Desktop Platforms.
58. Godot Engine Developers, Rendering Drivers in Godot 4.



DRAFT

Graphics APIs and Shaders in Game Development 39

Engine Platform API Notes

Godot Linux Vulkan, OpenGLES
Godot PlayStation 5 N/A
Godot PlayStation 4 N/A
Godot Xbox Series X|S N/A
Godot Xbox One N/A
Godot Nintendo Switch N/A
Godot Android Vulkan, OpenGLES
Godot iOS Metal, OpenGLES Uses Vulkan transpiled

to Metal via MoltenVK;
OpenGL ES is available as
a fallback for legacy de-
vices.

Godot Web WebGL
GameMaker59 PC (Microsoft Windows) DirectX11
GameMaker Mac OpenGL
GameMaker Linux OpenGL
GameMaker PlayStation 5 GNM
GameMaker PlayStation 4 GNM
GameMaker Xbox Series X|S DirectX11
GameMaker Xbox One DirectX11
GameMaker Nintendo Switch OpenGLES
GameMaker Android OpenGLES
GameMaker iOS OpenGLES
GameMaker Web WebGL
RenPy60 PC (Microsoft Windows) OpenGL
RenPy Mac OpenGL
RenPy Linux OpenGL
RenPy PlayStation 5 N/A
RenPy PlayStation 4 N/A
RenPy Xbox Series X|S N/A
RenPy Xbox One N/A
RenPy Nintendo Switch N/A
RenPy Android OpenGLES
RenPy iOS OpenGLES
RenPy Web WebGL

Date received: N/A; Date accepted: N/A.

59. Wikipedia Contributors, GameMaker Studio Graphics APIs.
60. The use of OpenGL and OpenGL ES in Ren’Py is not directly documented but is observable in the

engine’s open-source code on GitHub: Ren’Py Developers, n.d.


	Introduction
	Purpose and Contribution

	Related Work
	Gaps in Existing Research

	Methodology and Data Preparation
	Engine Adoption and Graphics API Trends
	Graphics API Analysis and Observations
	Android
	iOS
	Linux
	MacOS
	Summary of API Observations

	Impact of OpenGL Deprecation
	Focus on High-Fidelity Graphics Analysis

	Shader Language Analysis
	Windows and Xbox
	PlayStation Platforms

	Apple Platforms (macOS and iOS)
	Nintendo Switch
	Linux and Android

	Web Browser
	Summary of Shading languages


	Shader Development Tools and Workflows
	Unity: Render Pipelines and Their Impact on Game Development
	SRP
	Unity’s Render Pipelines
	Graphics APIs and Render Pipelines
	Rendering Modes in Unity’s Render Pipelines
	Future Developments in Unity’s Render Pipelines

	Custom shaders in Unity
	Code-Based Shaders
	Shader Graph
	Balacing Visual workflow and Code

	Unreal: Rendering And Presets
	Preset Types
	How Rendering Presets Work in Unreal Engine
	Rendering Modes in Unreal Engine
	Customization and Overrides
	Challenges and Documentation Gaps
	RHI: Translating Rendering Code to GPU APIs
	The Role of RHI in Shader Compilation and APITranslation
	Advantages of RHI in Cross-Platform Development
	Limitations and Developer Considerations
	Practical Example: Shader Compilation Pipeline

	Shader Workflow in Unreal Engine
	Creating Materials with the Material Editor
	Platform-Specific Optimization and Scalability
	Reusability with Material Functions
	Extending the Material Editor with Custom HLSL
	Integration with Unreal's Rendering Systems
	Summary of Unreal Shader Workflow

	Rendering in Godot Engine
	Renderer Options and Compatibility
	Forward and Forward+ Rendering
	Why Godot Avoids Deferred Rendering
	GPU API Support and RenderingDevice Abstraction
	Lighting and APIConstraints

	Shader Workflow in Godot Engine
	Custom Shaders in Godot
	Visual Shaders in Godot
	Balancing Code-Based and Visual Shaders


	Comparison of Shader Workflows Across Engines
	Code-Based Shaders comparison
	Unreal Engine
	Unity
	Godot

	Key Comparisons
	Comparison of Visual Node-Based Systems
	Unreal Engine
	Unity
	Godot
	Summary


	Discussion
	Engine Adoption and API Trends
	Implications of Visual Tools
	Balancing Fidelity and Accessibility
	Future Considerations

	Conclusion
	Key Findings
	Practical Implications
	Final Remarks


	Supplementary Material
	Acronyms
	Key Words

